Math 5A Quiz 1.5 and 1.7

Show all work neatly with clear presentations.

(1) Given the graph of f(x) below, find the following (4 points)

(a)
$$\lim_{x \to 3} f(x) = \frac{2}{x + 2}$$

(b)
$$\lim_{X \to -1^{+}} f(x) = \frac{2}{1}$$

(c) $\lim_{X \to -1^{-}} f(x) = \frac{2}{1}$

(c)
$$\lim_{x \to -1^{-}} f(x) =$$
______.

$$\lim_{(d)} \lim_{x \to -1} f(x) \quad \mathbf{D} \mathbf{N} \mathbf{E}$$

(e)
$$\lim_{x \to 2^+} f(x) = \frac{}{}$$

(e)
$$\lim_{x \to 2^{+}} f(x) = \frac{1}{1 + 1}$$

(f) $\lim_{x \to 2^{-}} f(x) = \frac{1}{1 + 1}$

_(g)
$$f(-1) =$$

(h) find c so that
$$f(c) = 2$$

Find X value corresponding to ay value of 3

(You may use the computer, but cut and paste a screen shot showing your numbers.

Use your tables to estimate Limit

3) Find the following infinite limits (without using a table of values) Show work.

b) $\lim_{x\to 2} \frac{5}{x^2-4x+4} = 0$ (4 points)

 $\lim_{x \to a} f(x)$ does not exist. $\mathbf{a} = \mathbf{2}$

+ 4) Sketch the graph of the function and use it to determine all values of a for which

(4 points)

The graph below depicts $f(x) = x^3$ with $\varepsilon = 0.2$ and $\delta = 0.2$ (where ε and δ are as described in the definition of limit). (Note: you should be able to recreate such a graph by hand if given $f(x), a, \varepsilon, \delta$ on the exam)

Does this value of δ satisfy the definition for the given ε ?

f not, compute a value of $\,\delta\,$ that would work. Show thought process.

